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Social Science is increasingly interested in individual-level outcomes

e Researchers are increasingly seeking to pose and answer research questions
about prediction at the individual-level (e.g., Hofman et al. 2017, Salganik et al.
2020, Arpino et al. 2022)

o Increasing availability of rich individual-level data (digitization of census data, digital trace data,
national register data, etc.)
e However,demographers still know relatively little about how accurately
demographic events - such as fertility, migration, or mortality - can be predicted
at the individual level



Research Question: How accurately can age of death be
predicted from sociodemographic characteristics?

Answer speaks to the social rigidity of mortality: is human longevity a
deterministic or stochastic process?

Answer to question has applications to:

e Individual-level mortality risk scores used in medicine and epidemiology,
where such mortality risk scores are valuable for adjusting for risk between
treatment groups in both clinical and/or observational studies

e Mortality risk models could allow for more efficiently targeted
individual-level treatments and interventions



CenSoc dataset: 1940 Census + Numident Mortality Records

1940 Census Social Security Numident File
(Early-Life Covariates) (Deaths from 1988 - 2005)
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CenSoc dataset: 1940 Census + Numident Mortality Records

1940 Census is the
first census to

include questions > 1949 Censu_s Social Security Numident File
about income, (Early-Life Covariates) (Deaths from 1988 - 2005)
education, housing,

etc.

ABE Exact Match on:
| first name, last name, census
age, and place of birth

/

CenSoc-Numident

(N =7 million)




Information collected on the 1940 Census

e Census Form:
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CenSoc dataset: 1940 Census + Numident Mortality Records

1940 Census
(Early-Life Covariates)

Social Security Numident File
(Deaths from 1988 - 2005)

| first name, last name, census

ABE Exact Match on:

age, and place of birth

/

CenSoc-Numident

(N =7 million)
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Publicly available
mortality records,
almost no
sociodemographic
characteristics.




CenSoc dataset: 1940 Census + Numident Mortality Records

1940 Census Social Security Numident File
(Early-Life Covariates) (Deaths from 1988 - 2005)
ABE Exact Match on: ABE record linkage
- first name, last name, census algorithm standardizes
age, and place of birth <@——— names and allows for
some flexibility on birth
year.

/

CenSoc-Numident

(N =7 million)
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Abramitzky, Ran, Leah Platt Boustan, Katherine Eriksson, James Feigenbaum, and Santiago Pérez. 2019. Automated Linking of Historical Data.




CenSoc-Numident is broadly representative of the population but
contains slightly higher SES individuals

CenSoc-Numident: Comparison of Socioeconomic Characteristics (Women)
Educ: High School Race: Black Race: White
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CenSoc allow us to zoom in on “high-resolution” aggregate mortality
disparities (e.g., education staircase)

Educational pattern of longevity at age 65 Income pattern of longevity at age 65
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Clear country-of-origin patterns of longevity (Hispanic Mortality Paradox)

Women

Peru 1

El Salvador 1
Uruguay 1
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Colombia 1 |
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Guyana 1
Argentina
Chile

Costa Rica 1
Mexico 1
Panama 1 '
Bolivia 1 ,
Paraguay 1 '
Native Born White Stayer 1 !
Puerto Rico 1 ‘
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Can we predict later-life longevity using early-life
sociodemographic characteristics?

Analytic Strategy

e Machine learning: Allows for detection of
interaction terms and higher order effects

Sample Split

o Primarily interested in prediction, not

interpretability r 25% Test

e Train machine learning algorithms on (N = 21k)

randomly sampled “training” partition, test
algorithms on the randomly sampled “testing”

partition Cohort of 1910 75% Training
: (N=85k) [T (N=64k)
e Restrict to cohort of 1910

o  Age 30 when observed in 1940 Census

o  Computationally easier, still large sample

o  Similar results for other cohorts + pooled cohorts

e Standardized continuous variables using
min-max normalization



Superlearner — an ensembling approach

e How do you pick best machine learning algorithm?

e Superlearner (ensemble learning) fits several different algorithms and tests
performance using cross-validation to estimate mean squared error for each

algorithm

o Combines models into a single model by picking the weighted combination of algorithms that has

the lowest mean squared error

Algorithm Description Cross-validated Risk Superlearner Coefficient
ghm Generalized boosted regression 22.84 0.74

Im Linear model 22.87 0.21

xgboost Extreme gradient boosting 23.30 0.05

ranger Random forest regression + classification 23.35 0.0001

ridge Ridge Regression 22.87 0.0

mean Arithmetic mean 23.11

0.0
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Our best model explains ~1% of variation in age of death in

testing dataset

Superlearner: Predicted vs. Observed Age of Death
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Similar patterns across all machine learning algorithms tested

Predicted Age of Death

90 1

851

801

85

801

Predicted vs. Observed Age of Death
gbm Im

R =0.098, p < 2.2e-16

R =0.09,p < 2.2e-16

v

ranger xgboost

.
R =0.052, p = 4e-14 R = 0.054 &= 3.5e-15
]

80 85 90 95 80 85 90 95
Actual Age of Death

15



Gender and education are unsuprisingly the most ‘important’ predictors

Predictor

Relative Variable Importance
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years) are the most important

predictors
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Household size and marital status are other key predictors

SEX 1
EQLICD

Relative Variable Importance
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Conclusions

e We fit several different machine learning algorithms on a large-scale mortality dataset,
finding none of our algorithms predicted well in our test dataset

e Earlylife sociodemographic characteristics are very weak predictors of later life age of
death

o Even if we can see clear mortality disparities at the fine aggregate levels, this doesn’t
translate into the ability to predict individual-level outcomes

e Mortality is a stochastic process that isn’'t pre-determined: huge amounts of unobserved
heterogeneity not captured by early-life sociodemographic characteristics
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Thank you

Questions?

y caseyfbreen
DA<l caseybreen@berkeley.edu
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