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Social Science is increasingly interested in individual-level outcomes  

● Researchers are increasingly seeking to pose and answer research questions 

about prediction at the individual-level (e.g., Hofman et al. 2017, Salganik et al. 

2020, Arpino et al. 2022) 

○ Increasing availability of rich individual-level data (digitization of census data, digital trace data, 

national register data, etc.) 

● However, demographers still know relatively little about how accurately 

demographic events – such as fertility, migration, or mortality - can be predicted 

at the individual level
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Research Question: How accurately can age of death be 
predicted from sociodemographic characteristics? 

Answer speaks to the social rigidity of mortality: is human longevity a 
deterministic or stochastic process? 

Answer to question has applications to: 

● Individual-level mortality risk scores used in medicine and epidemiology, 
where such mortality risk scores are valuable for adjusting for risk between 
treatment groups in both clinical and/or observational studies

● Mortality risk models could allow for more efficiently targeted 
individual-level treatments and interventions
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CenSoc dataset: 1940 Census + Numident Mortality Records 
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CenSoc dataset: 1940 Census + Numident Mortality Records 

1940 Census is the 
first census to 
include questions 
about income, 
education, housing, 
etc.
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Information collected on the 1940 Census  

● Census Form: 
○ Gender

○ Race 

○ Place of birth

○ Internal migration

○ Age 

○ Employment status / occupation*  

○ Household characteristics

○ Education 

○ Wage income* 

6



CenSoc dataset: 1940 Census + Numident Mortality Records 

Publicly available 
mortality records, 
almost no 
sociodemographic 
characteristics. 
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CenSoc dataset: 1940 Census + Numident Mortality Records 

ABE record linkage 
algorithm standardizes 
names and allows for 
some flexibility on birth 
year. 
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CenSoc-Numident is broadly representative of the population but 
contains slightly higher SES individuals
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CenSoc allow us to zoom in on “high-resolution” aggregate mortality 
disparities (e.g., education staircase) 
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Clear country-of-origin patterns of longevity (Hispanic Mortality Paradox)  

Andrea Miranda-Gonzalez, Kathy Perez, and Casey Breen. Understanding the Hispanic Mortality Paradox: Variation by Country of Origin
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Can we predict later-life longevity using early-life 
sociodemographic characteristics? 

● Machine learning: Allows for detection of 
interaction terms and higher order effects 

○ Primarily interested in prediction, not 
interpretability 

● Train machine learning algorithms on 
randomly sampled “training” partition, test 
algorithms on the randomly sampled “testing” 
partition 

● Restrict to cohort of 1910

○ Age 30 when observed in 1940 Census

○ Computationally easier, still large sample

○ Similar results for other cohorts + pooled cohorts

● Standardized continuous variables using 
min-max normalization 

Sample Split
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Analytic Strategy



Superlearner — an ensembling approach 

● How do you pick best machine learning algorithm?

● Superlearner (ensemble learning) fits several different algorithms and tests 
performance using cross-validation to estimate mean squared error for each 
algorithm

○ Combines models into a single model by picking the weighted combination of algorithms that has 
the lowest mean squared error   
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Our best model explains ~1% of variation in age of death in 
testing dataset 

Low predictive accuracy 
(R = .098, R2 = .0096). 
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Similar patterns across all machine learning algorithms tested 
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Gender and education are unsuprisingly the most ‘important’ predictors 
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Gender and education (in 
years) are the most important 
predictors



Household size and marital status are other key predictors   
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Number of persons living in 
the household and marital 
status are key predictors 



Conclusions

● We fit several different machine learning algorithms on a large-scale mortality dataset, 
finding none of our algorithms predicted well in our test dataset

● Early life sociodemographic characteristics are very weak predictors of later life age of 
death 

○ Even if we can see clear mortality disparities at the fine aggregate levels, this doesn’t 
translate into the ability to predict individual-level outcomes 

● Mortality is a stochastic process that isn’t pre-determined: huge amounts of unobserved 
heterogeneity not captured by early-life sociodemographic characteristics  
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Thank you
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Questions? 
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