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The growth of linked data in the social sciences

▶ Explosion in publicly-available linked census and admin data
resources (Ruggles et al., 2020; Genadek and Alexander, 2022; Goldstein
et al., 2021; Abramitzky et al., 2020)

▶ Much lower barriers to entry (500+ social science papers per year)

▶ Large and important body of methodological research on improving record
linkage (Ruggles, Fitch and Roberts, 2018; Bailey et al., 2020; Hwang and
Squires, 2024; Postel, 2023; Abramitzky et al., 2020; Helgertz et al., 2022)
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Less Methodological Attention to Inference
▶ Some guidance exists for inference

with linked data (Bailey, Cole and
Massey, 2019; Bailey et al., 2020)

▶ No formal framework or
consensus on best practices for
inference under linkage error

▶ This study introduces a
framework to unpack bias
introduced by false and missed
matches
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Two types of linkage errors
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Missed Matches

▶ Smaller sample size → reduced
statistical power and larger
uncertainty

▶ Potential selection bias in
records that are successfully linked
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Conceptual parallel with non-probability sampling

In non-probability sampling, from a population U :

πi = P (i ∈ S|i ∈ U) (1)
where
▶ S is the sample

▶ πi is inclusion probability in the sample
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Conceptual parallel with non-probability sampling

▶ Unknown πi complicates population
parameter estimation and inference

▶ Analogous to bias from linkage
errors in linked data analysis

▶ Pick correct reference population
for weighting...

Non-Probability Toolkit

▶ Post-stratification weighting

▶ Raking

▶ Inverse probability weighting⋆

▶ Various matching approaches...
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False matches - descriptive rates

Ideal case (no false matches):

R =
O

N
(2)

▶ R: Observed rate (e.g., event rate)

▶ O: Number of observed outcomes/events

▶ N : Sample size (denominator)
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False matches - descriptive rates

R′ = Rtrue × (1− fr)︸ ︷︷ ︸
Contribution of True Matches

+ Rfalse × fr︸ ︷︷ ︸
Contribution of False Matches

(3)

▶ Rtrue: Rate for true matches

▶ Rfalse: Rate for false matches

▶ fr: False match rate
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False matches — regression coefficients

Y = β0 + β1X + ϵ (4)
where:

β̂1 =
Cov(X,Y )

Var(X)
(5)
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False matches — regression coefficients

β̂′
1 =

(1− fr)(Cov(X,Y )) + (fr) (Cov(Xfalse, Yfalse))

Var(X)
(6)
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Regression framework

β̂′
1 =

(1− fr) · Cov(X,Y ) +(((((((((((
fr · Cov(Xfalse, Yfalse)

Var(X)
(7)

=
(1− fr) · Cov(X,Y )

Var(X)
(8)

= β̂1(1− fr) (9)
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Illustrative simulation
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Illustrative simulation
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Empirical Results

21 / 31

Intro Conceptual Framework Empirical Results Checklist References Reserve



16/25

Empirical Results — regression on wage/salary income
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How Do We Practically Address False Matches?

▶ Validation variable:
▶ Variable not used in the linkage process but available in both datasets, such

as middle initial, month of birth (Bailey, Cole and Massey, 2019)

▶ Disagreement suggests false match...

▶ Sensitivity analysis:
▶ Vary assumed false match rate fr

▶ Re-estimate key coefficients under plausible error scenarios
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Case Study — Racial Passing by Birth Cohort
Data:
▶ Link individuals from the 1940 Census to the Social Security Numident file

(CenSoc-Numident)

Validation and Adjustment Steps:
1. Identify cases with a middle initial in both datasets (25% of sample)

2. Use middle initial agreement to estimate the false match rate

3. Compute an adjustment factor based on this validation subsample

4. Apply the adjustment factor to correct estimates in the full linked sample
24 / 31
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Empirical results — rates of racial passing
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Reporting standards - Checklist for linked data

▶ Checklist for promoting
transparency and replicability in
record linkage science

▶ Key items
1. Describe linkage method

2. Quantify data representativeness

3. Discuss implications of linkage
errors for findings
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Conclusion

▶ Framework for unpacking errors in inference with linked data:
▶ Missed matches can may introduce selection bias—but can apply full

non-probability toolkit

▶ False matches are more challenging to account for

▶ We can estimate the bias they introduce if we know the (1) false match rate
and (2) covariance / association among false matches

▶ Record linkage checklist: a checklist for social science research with
linked data
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Questions?

 caseyfbreen
� casey.breen@demography.ox.ac.uk
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Growth of linked data (according to Web of Science...)
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Correct Reference Population for Weighting

▶ What is the target
population?

▶ Overlap between dataset
A and dataset B

▶ Think about mortality
selection and in and out
migration
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