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Social Science is increasingly interested in individual-level
outcomes

▶ Researchers are increasingly seeking to pose and answer research questions
about prediction at the individual-level (Hofman, Sharma and Watts, 2017;
Salganik et al., 2020; Arpino, Le Moglie and Mencarini, 2022)

▶ Explosion in types and volume of data available + advances in computing
have opened up new opportunities for prediction
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Research question: how accurately can age of death be
predicted from sociodemographic characteristics?

Why should we care?

▶ How much do theories about mortality (e.g., fundamental cause theory) tell
us about individual-level longevity?

▶ Predictive algorithms are increasingly used for policy
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How accurately can we predict individual-level longevity?

Our approach:

▶ Use large-scale, linked census + mortality data from
CenSoc-DMF (Goldstein et al., 2021)

▶ Focus on cohort of 1910, age 29/30 when observed in 1940 Census (N =
130k)

▶ Train 8 different machine learning algorithms to predict individual-level age
of death
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Train/test split for prediction exercise
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CenSoc allows us to zoom in on “high-resolution” aggregate
mortality disparities (e.g., education staircase)
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Our best model only explains 1.3% of variation in age of death
in test dataset

14 / 22

. .. .. .Introduction
. .. .Data and Methods

. .Results
. .. .. .Discussion of findings References



8/11

Conclusions

▶ We cannot use sociodemographic characteristics alone to accurately predict
individual-level longevity

▶ Three takeaways:

1. We can still study differences between groups

2. Machine learning gives us modest gains over simple baseline model

3. Healthy skepticism around using prediction for policy
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Working Paper on SocArXiv

▶ We would love feedback
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Thank You

 caseyfbreen
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