Mapping subnational gender gaps in internet and mobile adoption using social media data Johns Hopkins University

> Casey F. Breen¹ Masoomali Fatehkia² Jiani Yan¹ Douglas R. Leasure¹ Ingmar Weber³ Ridhi Kashyap¹

> > December 13, 2023

¹University of Oxford ²Qatar Computing Research Institute ³Saarland University

- 1. Overview of digital gender gaps project
- 2. Our approach to using **social media data** to predict subnational digital gender gaps
- 3. Overview of subnational estimates

Background

Data + methods

Results 0000000000000000 Conclusion

Benefits of digital revolution

- The digital revolution has ushered in tremendous societal and economic benefits
 - Lower gender inequality, lower maternal/child mortality, higher contraception (Rotondi et al., 2020)
 - Boost social connectivity, social learning, access to vital services (Unwin, 2009; DiMaggio and Hargittai, 2001; Suri and Jack, 2016)
 - Increases levels of education, economic benefits (Hjort and Poulsen, 2019; Kho, Lakdawala and Nakasone, 2018; Kharisma, 2022)

Benefits are often greatest in the most unequal, disadvantaged areas

Background 0000 Data + methods

Results 000000000000000 Conclusion 000

Tracking the digital divide

 Access to digital technologies such as mobile phones and internet remains highly unequal

- Especially in low- and middle-income countries
- Especially among women
- UN Sustainable Development Goals (SDGs): Reducing inequalities in access to digital technologies by gender (SDG5) and reducing digital literacy gaps (SDG4)

Data + methods

Results 0000000000000000 Conclusion 000

Digital gender gaps project overview

- 1. **Data infrastructure**: Map and understand gender gaps in digital connectivity and social media use
 - Today subnational estimates
- 2. **Impacts research**: impacts of digital information and capabilities on women's economic and social empowerment outcomes
 - Cross-national, comparative perspective (low- and middle- income countries)

Results 00000000000000 Conclusion 000

Original "impacts" research

Using Facebook ad data to track the global digital gender gap

Masoomali Fatehkia °, Ridhi Kashyap ^b 🙁 🖾 , Ingmar Weber ^c

Show more 🗸

+ Add to Mendeley 😪 Share 🍠 Cite

Regular article | Open access | Published: 29.July 2021 Analysing global professional gender gaps using LinkedIn advertising data

Ridhi Kashyap 🖾 & Florianne C. J. Verkroost

EPJ Data Science 10, Article number: 39 (2021) Cite this article

6421 Accesses | 13 Citations | 21 Altmetric | Metrics

RESEARCH ARTICLE | SOCIAL SCIENCES | 8

f 🕊 in 🖻 🤮

Leveraging mobile phones to attain sustainable development

Valentina Rotondi 🔍 🖻 , Ridhi Kashyap 🧐 , Luca Maria Pesando 🎱 , 🖬 and Francesco C. Billari 🔍 Authors Info & Affiliations

Edited by Barbara Entwisle, University of North Carolina at Chapel Hill, Chapel Hill, NC, and accepted by Editorial Board Member Mary C. Waters April 6, 2020 (received for review May 30, 2019)

June 1, 2020 117 (24) 13413-13420 https://doi.org/10.1073/pnas.1909326117

Introduction

Background 0000 Data + methods

Results 000000000000000 Conclusion 000

Data infrastructure – digitalgendergaps.org

(Kashyap et al., 2020)

Background

Data + methods

Results

Conclusion 000

Adoption of digital technology varies geographically

Source: Nigeria, Demographic and Health Survey

Introduction 000000 Background

 $\begin{array}{l} \mathsf{Data} + \mathsf{methods} \\ \mathsf{oooooooooo} \end{array}$

Results 0000000000000 Conclusion 000

Women using internet, past 12 months

Background

 $\begin{array}{l} \mathsf{Data} + \mathsf{methods} \\ \texttt{oooooooooo} \end{array}$

Results

Conclusion

Women using internet, past 12 months

Introduction 000000 Background

 $\begin{array}{l} \mathsf{Data} + \mathsf{methods} \\ \texttt{oooooooooo} \end{array}$

Results

Conclusion

Develop subnational estimates of adoption

- Goal: Develop estimates of internet and mobile adoption by gender and digital gender gaps
- First GADM1 subnational level
 - ▶ N = 874

Introduction 000000 Background

Data + methods

Results 00000000000000 Conclusion

Prediction framework - theoretical background

- Digital gender gaps will be shaped by overall levels of economic development and digital infrastructure
- > Patriarchal norms and beliefs will moderate this relationship

Background 0000 Data + methods

Results 0000000000000000 Conclusion

Overview of approach

Ground truth – Demographic and Health Surveys (DHS)

Household surveys representative at the first subnational level

- Standardized sample design, questionnaire, implementation, etc.
- Questions on individual-level internet use and mobile phone use (wave 7 onwards)
- ▶ Focus on 19 different DHS surveys, 2016-2020

Background

Data + methods

Results 0000000000000000 Conclusion 000

Facebook audience counts

- Collected through public marketing API
- Specify geographic region (FB template or custom region)
- Disaggregated counts by gender, age, device type, etc.

Background

Data + methods

Results

Conclusion 000

Facebook audience counts 'online predictors'

Collected in 2021.

- Facebook penetration 13+ female
 Facebook penetration 13+ male
 Facebook audience 13+ gender gap
 iOS 13+ female fraction

- 5. iOS 13+ male fraction

- 6. WiFi age 13+ female fraction
 7. WiFi age 13+ male fraction
 8. 4G network age 13+ female fraction
 9. 4G network age 13+ male fraction
 10. FB rural WiFi mean (pop weighted)

Background

Data + methods Results

Geospatial and population data

- Include 'offline' predictors that are uniformly available and consistent across subnational units
 - Satellite-derived nighlights data
 - Population density
 - Subnational education index, income index, human development index (HDI), gender development index (GDI)

Background

Data + methods

Results 0000000000000000 Conclusion 000

Full set of offline predictors

Variable Name	Source	Country (N)
Educational Index Females	Subnational Dev. Database	50
Educational Index Males	Subnational Dev. Database	50
Income Index Females	Subnational Dev. Database	50
Income Index Males	Subnational Dev. Database	50
Subnational GDI	Subnational Dev. Database	50
Subnational HDI Females	Subnational Dev. Database	50
Subnational HDI Males	Subnational Dev. Database	50
WPop 2020 Age 15-49 Female Frac	WorldPop	58
WPop 2020 Age 15-49 Male Frac	WorldPop	58
WPop 2020 Pop Density	WorldPop	59
Nightlights Mean Pop Weighted	Earth Observation Group	58

Introduction

Background

Data + methods

Results

Conclusion

Outcomes of interest (from DHS)

Indicators	Women	Men	Gender Gap
Mobile Phone Ownership	\checkmark	\checkmark	\checkmark
Internet Use, Past 12 Mo	\checkmark	\checkmark	\checkmark

Background

Data + methods

Results

Conclusion

Defining a Digital Gender Gap

$$\text{Gender Gap} = \frac{\text{Indicator}_f/\text{Indicator}_m}{\text{Pop}_f/\text{Pop}_m} \tag{1}$$

where

- Indicator_f is the number of female (male) users aged 15–49 (e.g., internet, past 12 months)
- Pop_f is the total population of women (men) aged 15–49

Background

Data + methods

Results 000000000000000 Conclusion

Machine Learning Strategy

- How do you pick the best machine learning algorithm?
- ▶ Fit lots of algorithms, see which have the best performance
- Ensemble learning to combine algorithms and tests performance using cross-validation to estimate mean squared error for each algorithm (Van der Laan, Polley and Hubbard, 2007)

Background

Data + methods

Results 000000000000000 Conclusion 000

Machine Learning Algorithms Considered

Algorithm	Description
glmnet (Lasso)	Lasso Regression
glmnet (Ridge)	Ridge Regression
glmnet (Elastic Net)	Elastic Net with 50% L1 Ratio
polspline	Polynomial Spline
ranger	Random Forest with 100 Trees
gbm	Gradient Boosted Machine
glm	Generalized Linear Model
xgboost	Extreme Gradient Boosting
SuperLearner	Ensemble method combining multiple learning algorithms

Background

Data + methods

Results

Conclusion

Greatly expanded coverage of digital technology adoption

Α

Women, Observed

в

Women, Predicted

Introduction 000000 Background 0000 Data + methods

Results

Conclusion

Similar overall patterns for internet and mobile

Results

Conclusion

Testing model performance

- How do we assess model performance?
- Cross-validation using 19 countries with ground truth data

Background 0000 $\begin{array}{l} \mathsf{Data} + \mathsf{methods} \\ \texttt{oooooooooo} \end{array}$

Results

Conclusion 000

10-fold cross validation

Background

Data + methods

Results

Conclusion

References

26/38

Leave-one-country-out cross validation

Background

 $\begin{array}{l} \mathsf{Data} + \mathsf{methods} \\ \texttt{oooooooooo} \end{array}$

Results

Conclusion

Model performance

Algorithm Performance (\mathbf{R}^2)

Introduction 000000

Background

Data + methods

Results

Conclusion

Results for Nigeria (Leave-one-country-out)

Background

Data + methods

Results

Conclusion

References

29/38

Assessing predictive accuracy

Overall predictiveness - mobile

Introduction

Background

Data + methods

Results

Conclusion

References

31/38

Overall predictiveness - internet

Introduction 000000

Background

Data + methods

Results

Conclusion

References

32/38

Large variation in predictive accuracy across countries

Relationship: levels of mobile phone penetration and gender gaps

Background

 $\begin{array}{l} \mathsf{Data} + \mathsf{methods} \\ \texttt{oooooooooo} \end{array}$

Results

Conclusion 000

Next steps and future opportunities

Regular Facebook collections and pipeline to monitor trends over time

Residual analysis + quantifying uncertainty: what factors explain where model does worse?

Results 0000000000000000 Conclusion •00

- Using Facebook audience counts greatly expands our ability to accurately predict digital gender gaps in countries with no ground truth
- Huge disparities in access to mobile and internet technologies between and within countries
- New opportunities to study population-level impacts of digital technology using these subnational estimates

Background

Data + methods

Results 0000000000000000 Conclusion

Thank You

Questions?

Introduction

Background

Data + methods

Results 000000000000 Conclusion

References

DiMaggio, Paul and Eszter Hargittai. 2001. "From the 'Digital Divide' to 'Digital Inequality': Studying Internet Use as Penetration Increases." p. 25.

Hjort, Jonas and Jonas Poulsen. 2019. "The Arrival of Fast Internet and Employment in Africa." American Economic Review 109(3):1032-1079.

Kashyap, Ridhi, Masoomali Fatehkia, Reham Al Tamime and Ingmar Weber. 2020. "Monitoring Global Digital Gender Inequality Using the Online Populations of Facebook and Google." *Demographic Research* 43:779–816.

Kharisma, Bayu. 2022. "Surfing Alone? The Internet and Social Capital: Evidence from Indonesia." Journal of Economic Structures 11(1):8.

Kho, Kevin, Leah K Lakdawala and Eduardo Nakasone. 2018. "Impact of Internet Access on Student Learning in Peruvian Schools.".

- Rotondi, Valentina, Ridhi Kashyap, Luca Maria Pesando, Simone Spinelli and Francesco C. Billari. 2020. "Leveraging Mobile Phones to Attain Sustainable Development." Proceedings of the National Academy of Sciences 117(24):13413-13420.
- Suri, Tavneet and William Jack. 2016. "The Long-Run Poverty and Gender Impacts of Mobile Money." Science 354(6317):1288–1292.
- Unwin, P. T. H. 2009. ICT4D: Information and Communication Technology for Development. Cambridge University Press.
- Van der Laan, Mark J., Eric C. Polley and Alan E. Hubbard. 2007. "Super Learner." Statistical Applications in Genetics and Molecular Biology 6(1).

Background

Data + methods

Results 000000000000000 Conclusion 000