Berkeley Unified Numident Mortality Database: Public administrative records for individual-level mortality research

Full Count Census Data II: Record Linkage and Databases

Casey F. Breen ¹ Joshua R. Goldstein ¹

¹University of California, Berkeley | Department of Demography

November 18, 2022

▶ We are far from a complete understanding of the causal determinants of health and mortality in the United States

- We are far from a complete understanding of the causal determinants of health and mortality in the United States
- Mortality research is often hampered by data limitations

- We are far from a complete understanding of the causal determinants of health and mortality in the United States
- Mortality research is often hampered by data limitations
 - ▶ U.S. has no population-level registry like Scandinavian countries

- We are far from a complete understanding of the causal determinants of health and mortality in the United States
- Mortality research is often hampered by data limitations
 - ▶ U.S. has no population-level registry like Scandinavian countries
- ▶ Researchers are increasingly turning to administrative datasets (Chetty et al., 2016; Card, Dobkin and Maestas, 2008; Card et al., 2010; Meyer and Mittag, 2019; Ruggles, 2014)

Numident: Backbone of SSA record keeping system

The Social Security Numident (Numerical Index) tracks Social Security Number holders

Numident: Backbone of SSA record keeping system

Introduction

- ► The Social Security Numident (Numerical Index) tracks Social Security Number holders
 - Date of birth, date of death, birthplace, race, sex, parents names, etc.

Numident: Backbone of SSA record keeping system

- The Social Security Numident (Numerical Index) tracks Social Security Number holders
 - Date of birth, date of death, birthplace, race, sex, parents names, etc.
- ► Internal restricted version used for research by SSA researchers and collaborators (Mehta et al., 2016; Elo et al., 2004; Waldron, 2007)

National Archives public release of Numident records

A subset of Numident records were transferred from the Social Security Administration to the National Archives

National Archives public release of Numident records

- ► A subset of Numident records were transferred from the Social Security Administration to the National Archives
- National Archives made these records available 60 text files with 120+ fields with many missing values
- Messy, challenging data structure

The structure of the National Archives Numident records

Record type	Total entries	Total records (persons)	Entries per person
Death	49,459,293	49,459,293	1.000
Applications	72,120,516	40,870,455	1.765
Claims	25,228,257	25,140,847	1.004

1. Select names and vital dates from death records

- Select names and vital dates from death records
- Add harmonized covariates from application and claim records (and reconcile discrepant values)

- Select names and vital dates from death records
- Add harmonized covariates from application and claim records (and reconcile discrepant values)
- 3. Create new variables (e.g., age of death, state where SSN was issued)

- Select names and vital dates from death records
- Add harmonized covariates from application and claim records (and reconcile discrepant values)
- 3. Create new variables (e.g., age of death, state where SSN was issued)

Variables in the BUNMD

Variable	Description	Numident Source
ssn	Social Security Number	Death Entry
fname	First name	Death Entry
mname	Middle name	Death Entry
Iname	Last Name	Death Entry
byear	Year of birth	Death Entry
bmonth	Month of birth	Death Entry
bday	Day of birth	Death Entry
dyear	Year of death	Death Entry
dmonth	Month of death	Death Entry
dday	Day of death	Death Entry
zip_residence	ZIP Code of residence at death	Death Entry
sex	Sex	Death, Application, or Claim Entry
race_first	Race (first)	Application Entry
race_last	Race (last)	Application Entry
bpl	Place of birth	Application or Claim Entry
father_fname	Father's first name	Application or Claim Entry
father_mname	Father's middle name	Application or Claim Entry
father_Iname	Father's last name	Application or Claim Entry
mother_fname	Mother's first name	Application or Claim Entry
mother_mname	Mother's middle name	Application or Claim Entry
mother_Iname	Mother's last name	Application or Claim Entry
death_age	Age of death (years)	Constructed
socstate	State in which SS card issued	Constructed
age_first_app	Age of first application	Constructed
number_apps	Total number of applications	Constructed
number_claims	Total number of claims	Constructed
weight	Weight variable	Constructed
ccweight	Complete case person-weight	Constructed

Mortality coverage ages 65+

95%+ mortality coverage between 1988-2005

Lexis diagram of death coverage

Double truncation presents challenges for mortality estimation

Attenuation: Regression understates effects of predictors

Age of Death =
$$\beta_0 + \lambda_t t + \mathbf{X}\boldsymbol{\beta} + \epsilon$$
 (1)

where

1. β_0 is the intercept

References

Attenuation: Regression understates effects of predictors

Age of Death =
$$\beta_0 + \lambda_t t + \mathbf{X}\boldsymbol{\beta} + \epsilon$$
 (1)

where

- 1. β_0 is the intercept
- 2. $\lambda_t t$ are birth year fixed effects

References

Attenuation: Regression understates effects of predictors

Age of Death =
$$\beta_0 + \lambda_t t + \mathbf{X}\boldsymbol{\beta} + \epsilon$$
 (1)

where

- 1. β_0 is the intercept
- 2. $\lambda_t t$ are birth year fixed effects
- 3. X is a matrix of covariates and β is the coefficient vector

$$h_i(x|\beta) = a_0 e^{b_0 x} e^{\beta Z_i} \tag{2}$$

where

 $lackbox{ }h_i(x|eta)$ is the hazard at age x conditional on parameters

lides References

$$h_i(x|\beta) = a_0 e^{b_0 x} e^{\beta Z_i} \tag{2}$$

where

- $lackbox{ }h_i(x|eta)$ is the hazard at age x conditional on parameters
- $ightharpoonup a_0$ is some baseline level of mortality

$$h_i(x|\beta) = a_0 e^{b_0 x} e^{\beta Z_i} \tag{2}$$

where

- $lacktriangledown h_i(x|eta)$ is the hazard at age x conditional on parameters
- $ightharpoonup a_0$ is some baseline level of mortality
- $ightharpoonup b_0$ gives rate of increase of mortality over time

13/20

$$h_i(x|\beta) = a_0 e^{b_0 x} e^{\beta Z_i} \tag{2}$$

where

- $lackbox{}{}h_i(x|eta)$ is the hazard at age x conditional on parameters
- $ightharpoonup a_0$ is some baseline level of mortality
- $ightharpoonup b_0$ gives rate of increase of mortality over time
- $ightharpoonup Z_i$ are the covariates for person i

$$h_i(x|\beta) = a_0 e^{b_0 x} e^{\beta Z_i} \tag{2}$$

where

- $lackbox{}{}h_i(x|eta)$ is the hazard at age x conditional on parameters
- $ightharpoonup a_0$ is some baseline level of mortality
- $ightharpoonup b_0$ gives rate of increase of mortality over time
- $ightharpoonup Z_i$ are the covariates for person i (e.g., years of education, place of birth)
- \triangleright β is the set of coefficients

Case study 1: Mortality advantage of the foreign born

Case study 2: ZIP Code level mortality estimation

CenSoc-Numident: Linking BUNMD with the 1940 Census

▶ **Problem** Double truncation can downwardly attenuate estimates from conventional regression

- ► **Problem** Double truncation can downwardly attenuate estimates from conventional regression
 - ► Solution: Parametric maximum likelihood methods (Gompertztrunc R Package)

- ► **Problem** Double truncation can downwardly attenuate estimates from conventional regression
 - Solution: Parametric maximum likelihood methods (Gompertztrunc R Package)
- ▶ Identify siblings using parents names and machine learning techniques (Joo et al.)

- ► **Problem** Double truncation can downwardly attenuate estimates from conventional regression
 - Solution: Parametric maximum likelihood methods (Gompertztrunc R Package)
- Identify siblings using parents names and machine learning techniques (Joo et al.)
- ▶ Link onto 1950 Census, WWII enlistment records

Conclusions

▶ BUNMD: publicly available file containing 50 million mortality records and covariates

Conclusions

- ➤ BUNMD: publicly available file containing 50 million mortality records and covariates
- ▶ Linked onto the 1940 Census (N = 9 million)

Conclusions

- BUNMD: publicly available file containing 50 million mortality records and covariates
- Linked onto the 1940 Census (N = 9 million)
- Publicly Available: Reproducible, extendable science. No barriers to entry.

0.00

Thank You

Download: CenSoc.Berkeley.edu

Funding: R01AG058940, R01AG076830

Contact: ⊠ caseybreen@berkeley.edu

DEMOGRAPHIC RESEARCH

VOLUME 47, ARTICLE 5, PAGES 111–142 PUBLISHED 14 JULY 2022

http://www.demographic-research.org/Volumes/Vol47/5/ DOI: 10 4054/DemRes 2022 47 5

Research Material

Berkeley Unified Numident Mortality Database: Public administrative records for individual-level mortality research

Casev F. Breen

Joshua R. Goldstein

Reserve Slides

20/26 References

Reserve slides

•00000

Introduction

González et al. — Hispanic mortality paradox

Goldstein et al. — Black names and longevity

Dependent Variable:	Death Age			
	Pooled	Family FE		
Model:	(1)	(3)	(4)	(5)
BNI (Standardized)	-0.2386 (0.2301)	-0.6258* (0.3060)	-0.6273* (0.3055)	-0.4696 (0.4380)
Birth Year FE Family FE Birth Order FE	Yes -	Yes Yes -	Yes Yes Yes	Yes Yes Yes
$\begin{array}{c} \text{Mortality Window} \\ \text{Observations} \\ \text{R}^2 \\ \text{Within } \text{R}^2 \end{array}$	$ \begin{array}{r} 1988-2005 \\ 30,429 \\ 0.21029 \\ 5.35 \times 10^{-5} \end{array} $	1988-2005 30,429 0.61428 0.00036	1988-2005 30,429 0.61430 0.00036	$1941-2007$ $45,893$ 0.56402 8.14×10^{-5}

Note:

*p<0.1; **p<0.05; ***p<0.01

Joo et al. — Identifying siblings using machine learning

	MI	., TH1	MI	, TH2		EM	EM, with	in birthplace
	Mean	Weighted	Mean	Weighted	Mean	Weighted	Mean	Weighted
		mean		mean		mean		mean
Total	1.53	1.35	1.31	1.14	0.53	0.46	0.44	0.39
Race: White	1.43	1.26	1.23	1.07	0.54	0.48	0.46	0.40
Race: Black	2.33	2.01	1.85	1.57	0.47	0.40	0.38	0.31
Race: Others	2.15	1.92	1.78	1.55	0.23	0.21	0.19	0.17
Cohort: 1900-4	0.77	0.74	0.60	0.57	0.23	0.19	0.21	0.17
Cohort: 1905-9	1.15	1.11	0.92	0.88	0.33	0.28	0.31	0.26
Cohort: 1910-4	1.44	1.42	1.21	1.19	0.47	0.41	0.45	0.39
Cohort: 1915-9	1.56	1.56	1.35	1.34	0.55	0.49	0.55	0.48
Cohort: 1920-4	1.65	1.64	1.42	1.42	0.58	0.51	0.58	0.52
Cohort: 1925-9	1.61	1.61	1.38	1.38	0.55	0.49	0.55	0.49
Cohort: 1930-4	1.47	1.46	1.24	1.23	0.49	0.44	0.49	0.44
% of any sibling	53.8%		50.6%		27.7%		25.0%	

Variable source and selection rule

Variable	Numident source	Selection rule
ssn	Death Entry	-
fname	Death Entry	-
mname	Death Entry	-
Iname	Death Entry	-
byear	Death Entry	-
bmonth	Death Entry	-
bday	Death Entry	-
dyear	Death Entry	-
dmonth	Death Entry	-
dday	Death Entry	-
zip_residence	Death Entry	-
sex	Death, Application, or Claim Entry	Last Recorded Sex
race_first	Application Entry	First Recorded Race
race_last	Application Entry	Last Recorded Race
bpl	Application or Claim Entry	Last Recorded BPL
father_fname	Application or Claim Entry	Maximum Characters
father_mname	Application or Claim Entry	Maximum Characters
father_Iname	Application or Claim Entry	Maximum Characters
mother_fname	Application or Claim Entry	Maximum Characters
mother_mname	Application or Claim Entry	Maximum Characters
mother_Iname	Application or Claim Entry	Maximum Characters
death_age	Constructed	-
socstate	Constructed	-
age_first_app	Constructed	-
number_apps	Constructed	-
number_claims	Constructed	-
weight	Constructed	-
ccweight	Constructed	-

Linking unmarried women in CenSoc-Numident

Sarah Johnston changes her name to Sarah Smith after she is observed in 1940 census

We can still establish a match using father's last name from Numident Record.

BUNMD Mortality Record

References

- Card, David, Carlos Dobkin and Nicole Maestas. 2008. "The Impact of Nearly Universal Insurance Coverage on Health Care Utilization: Evidence from Medicare." American Economic Review 98(5):2242–2258.
- Card, David E., Raj Chetty, Martin S. Feldstein and Emmanuel Saez. 2010. "Expanding Access to Administrative Data for Research in the United States." American Economic Association, Ten Years and Beyond: Economists Answer NSF's Call for Long-Term Research Agendas.
- Chetty, Raj, Michael Stepner, Sarah Abraham, Shelby Lin, Benjamin Scuderi, Nicholas Turner, Augustin Bergeron and David Cutler. 2016. "The Association Between Income and Life Expectancy in the United States, 2001-2014." JAMA 315(16):1750.
- Elo, Irma T., Cassio M. Turra, Bert Kestenbaum and B. Reneé Ferguson. 2004. "Mortality Among Elderly Hispanics in the United States: Past Evidence and New Results." *Demography* 41(1):109–128.
- Mehta, Neil K., Irma T. Elo, Michal Engelman, Diane S. Lauderdale and Bert M. Kestenbaum. 2016. "Life Expectancy Among U.S.-Born and Foreign-born Older Adults in the United States: Estimates From Linked Social Security and Medicare Data." Demography 53(4):1109–1134.
- Meyer, Bruce D. and Nikolas Mittag. 2019. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness, and Holes in the Safety Net." American Economic Journal: Applied Economics 11(2):176–204.
- Ruggles, Steven. 2014. "Big Microdata for Population Research." Demography 51(1):287-297.
- Waldron, Hilary. 2007. "Trends in Mortality Differentials and Life Expectancy for Male Social Security-Covered Workers, by Socioeconomic Status." Social Security Bulletin 67(3):28.