New Approaches to Collecting Data From a Respondent-Driven Sample

Session: Computational Demography, Machine Learning, and Algorithmic Bias

Casey F. Breen1 Dennis M. Feehan1

1University of California, Berkeley

April 7, 2022
Respondent-Driven Sampling (RDS)

- Leading method for sampling hidden populations

Hidden populations: populations that are hard-to-reach, often due to engaging in stigmatized or illegal behavior (persons who inject drugs, commercial sex workers, etc.).

RDS Key insight: Members of a hidden population are often socially connected to each other and can recruit each other to be interviewed.
Respondent-Driven Sampling (RDS)

- Leading method for sampling hidden populations

- **Hidden populations**: populations that are hard-to-reach, often due to engaging in stigmatized or illegal behavior (persons who inject drug, commercial sex workers, etc.)
Respondent-Driven Sampling (RDS)

- Leading method for sampling hidden populations

- **Hidden populations**: populations that are hard-to-reach, often due to engaging in stigmatized or illegal behavior (persons who inject drug, commercial sex workers, etc.)

- **RDS Key insight**: Members of a hidden population are often socially connected to each other – and can recruit each other to be interviewed
Goal: Introduce RDS-Multi, a new approach to collecting data from a respondent-driven sample
Respondent-Driven Sampling – Overview

1. Typical RDS study begins with 3-10 seeds, people known to be in the hidden population (e.g., people who inject drugs)
Respondent-Driven Sampling – Overview

1. Typical RDS study begins with 3-10 seeds, people known to be in the hidden population (e.g., people who inject drugs)

2. Seeds recruit other members of the hidden population to be interviewed
Respondent-Driven Sampling – Overview

1. Typical RDS study begins with 3-10 seeds, people known to be in the hidden population (e.g., people who inject drugs)

2. Seeds recruit other members of the hidden population to be interviewed

3. After being interviewed, respondents recruit next wave of respondents
RDS Recruitment Trees

Figure: Recruitment tree plots from Gile et al. (2015)
When Conventional RDS Doesn’t Work Well . . .

- **Low Connectivity**: Members of a hidden population don’t know other members of hidden population to recruit

- **High Clustering**: Bottlenecks due to extreme homophily make it difficult for RDS to fully traverse network

Figure: Clustered Social Network
What Do We Do When RDS Doesn’t Work Well?

- Improve statistical methods for analyzing RDS data
What Do We Do When RDS Doesn’t Work Well?

- Improve statistical methods for analyzing RDS data
- Change data collection procedure to give more favorable underlying network structure
RDS-Multi: Roadmap

Overview: Conventional RDS

New Approach: RDS-Multi

Simulation Study and Pilot Study

Conclusions and Next Steps
Motivating Example

▶ RDS Study: What is the proportion of people experiencing homelessness in the San Francisco Bay Area are fully vaccinated for COVID-19?

Figure: Bottlenecks between San Francisco and Oakland
New Approach: RDS-Multi

- New referral method: hidden population members refer other hidden population members or **social referents**, people highly connected to – but not in – the hidden population.

- For example:

 - **Hidden population**: People experiencing homelessness in the Bay area
 - **Social Referents**: Social workers specializing in homeless outreach services
Increase network connectivity

Figure: New referral method can improve underlying network structure
Decrease clustering and bottlenecks
Core insight: Not all people have same probability of being recruited into sample
Conventional RDS: Volz & Heckathorn Point Estimator

- **Core insight**: Not all people have the same probability of being recruited into the sample.

- Inclusion probability is proportional to degree.
Core insight: Not all people have the same probability of being recruited into sample.

Inclusion probability is proportional to degree:

\[\mu_{VH} = \frac{\sum_{i=1}^{n} \frac{z_i}{d_i}}{\sum_{i=1}^{n} \frac{1}{d_i}} \]

where \(d_i \) is respondent \(i \)'s degree and \(z_i \) is a binary covariate.
Adapt Volz-Heckathorn estimator to account for the new referral pattern:

\[\hat{\mu}'_{VH} = \frac{\sum_{i \in s' \cap H} \frac{q_i}{d_{i,R}}}{\sum_{i \in s' \cap H} \frac{1}{d_{i,R}}}, \]

where

- \(z_i \) is a binary covariate
- \(s' \cap H \) is the subset of the sample that consists of hidden population members;
- and \(d_{i,R} \) is the number of connections between \(i \) and the set \(R \) of social referents.
Estimating uncertainty in respondent-driven sampling using a tree bootstrap method

Aaron J. Baraff, Tyler H. McCormick, and Adrian E. Raftery
+ See all authors and affiliations

PNAS December 20, 2016 113 (51) 14668-14673; first published December 7, 2016;
https://doi.org/10.1073/pnas.1617258113

Contributed by Adrian E. Raftery, October 27, 2016 (sent for review November 24, 2015; reviewed by Sharad Goel and Matthew J. Salganik)
Variance Estimator – Tree Bootstrap

Figure: Adapted Tree Bootstrap Estimator (Baraff, McCormick and Raftery, 2016)
RDS-Multi: Key Considerations

1. Population of interest is the hidden population – we’ll drop all social referents, resulting in a smaller effective sample size (or will need to conduct more interviews)

2. We need a sufficiently large and well-connected set of social referent nodes
RDS–Multi: Roadmap

Overview: Conventional RDS
New Approach: RDS-Multi
Simulation Study and Pilot Study
Conclusions and Next Steps
Simulation Study

Figure: When connectivity is low, RDS-Multi performs better than the conventional RDS

Note: Sample sizes = 500, including social referents
Pilot Study in Kaya, Burkina Faso

Figure: RDS-Multi recruitment trees from pilot study\(^1\)

\(^1\)Zan, Owolabi, Baguiya, Oduor, Bangha, Kim and Rossier (2022)
RDS–Multi: Roadmap

Overview:
Conventional RDS

New Approach:
RDS-Multi

Simulation Study and Pilot Study

Conclusions and Next Steps
Conclusion

▶ RDS-Multi is a novel approach to collecting RDS data using social referents

▶ **Key advantages:**
 ▶ Enables RDS for weakly connected hidden populations
 ▶ Enables RDS for highly clustered networks

▶ **Key consideration:** RDS-Multi requires the availability of a sufficiently large and well-connected set of social referents
Next Steps

- More formal mathematical and empirical understanding of the trade-offs between RDS and RDS-Multi
- More empirical evidence from real world RDS-Multi studies
Thank You

Questions?

🐦 caseyfbreen
✉️ caseybreen@berkeley.edu

Zan, Moussa L., Onikepe Owolabi, Adama Baguiya, Clement Oduor, Martin Bangha, Caron Kim and Clémentine Rossier. 2022. “Using Respondent Driven Sampling to Measure Abortion Safety in Restrictive Contexts: Results from Kaya (Burkina Faso) and Nairobi (Kenya).”